
MSA USB Interface – Changes to MSA Basic code Page 1 of 11

Guide to the USB code in the MSA Basic application

This document summarises the changes made to the Basic code to implement a USB
interface.

Basics

The USB interface is accessed by calling a DLL – msadll.dll. This DLL exists to
provide an interface that Liberty basic is capable of using and codes a small amount
of functionality to get around some of Liberty’s limitations

In the code, a call to the DLL looks like this.

if USBdevice <> 0 then CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as

long, USBwrbuf$ as ptr, 4 as short, result as boolean

In this call, USBdevice is a Windows “handle” used to access the interface. If zero,
then the device has not been found. So, if the handle is not zero, call the USB
interface using the handle opened elsewhere in the program as #USB.

The function accessed in the DLL is called UsbMSADeviceWriteString and it takes 3
parameters and returns a single result. The parameters passed here are as follows:

USBdevice as long,

USBwrbuf$ as ptr,

4 as short

And the result is

result as boolean

At the moment there is precious little checking of the return codes – the application
just carries on regardless. Must change this sometime.

In all calls to this DLL other than the basic open/close functions, we will pass the
handle USBdevice and will have a Boolean result of the function (zero for fail, not
zero for success). The other parameters vary by function. In this case there is a String
called USBwrbuf$ and an integer value of 4.

What do the functions do? That will become clear later.

MSA USB Interface – Changes to MSA Basic code Page 2 of 11

The interface is opened thus

 if uVerifyDLL("msadll") then bUsbAvailable = 1 else bUsbAvailable = 0

 if bUsbAvailable then call UsbOpenInterface 'USB:01-08-2010

Having checked that the interface DLL is available, call the open function.

' --

' call this to try to open the USB interface

sub UsbOpenInterface 'USB:01-08-2010

 if UsbInterfaceOpen = 0 then

 USBdevice = 0

 on error goto [UsbInterfaceOpenError]

 open "msadll" for dll as #USB

 UsbInterfaceOpen = 1

 end if

 if USBdevice = 0 then

 on error goto [UsbInterfaceInitError]

 CALLDLL #USB, "UsbMSAInitialise", USBdevice as long

 end if

 exit sub

[UsbInterfaceOpenError]

 exit sub

[UsbInterfaceInitError]

 close #USB

 UsbInterfaceOpen = 0

 exit sub

end sub 'UsbOpenInterface

A similar function is called on exit

' ---

' call this to close the USB interface

sub UsbCloseInterface 'USB:01-08-2010

 if USBdevice <> 0 then

 CALLDLL #USB, "UsbMSARelease", USBdevice as long, result as boolean

 USBdevice = 0

 end if

 if UsbInterfaceOpen <> 0 then

 close #USB

 UsbInterfaceOpen = 0

 end if

 exit sub

end sub 'UsbCloseInterface

MSA USB Interface – Changes to MSA Basic code Page 3 of 11

ADC Input

There is one small routine that handles ass ADC input.

 ' Generic code for USB ADC input regardless of number of bits and ADC type

[Read22wSlimCBUSB] 'USB:01-08-2010

 USBwrbuf$ = "B201040A01"

 goto [ReadCommonwSlimCBUSB]

[Read16wSlimCBUSB] 'USB:01-08-2010

 USBwrbuf$ = "B200021001"

 ' fall through

[ReadCommonwSlimCBUSB] 'USB:01-08-2010

 if USBdevice = 0 then return

 UsbAdcCount = 0

 UsbAdcResult1 = 0

 UsbAdcResult2 = 0

 CALLDLL #USB, "UsbMSADeviceReadAdcs", USBdevice as long, USBwrbuf$ as ptr,_

5 as short, USBrBuf as struct, result as boolean

 if(result) then

 UsbAdcCount = USBrBuf.numreads.struct

 UsbAdcResult1 = USBrBuf.magnitude.struct

 UsbAdcResult2 = USBrBuf.phase.struct

 end if

 return

That’s all there is to it. The DLL and interface handle variable bit sizes and clocking
schemes; at the moment just the AD7685 and LT1860 are supported

The code shows one function; write to the MSA to instruct the USB controller to
perform an ADC conversion as defined by the USBwrbuf$ string then read the ADCs.
The string being written is explained later but essentially it tells the USB interface to
perform an ADC conversion of a given type. The result is then read within the DLL
and the result returned as one or two integers.

The variable UsbAdcCount holds the number of ADC results returned (which should
be 2 given the USB controller command ‘B2’) and the results are in the two variables.

The Liberty basic code that clocks the result in bit by bit is skipped as is the code that
reads these bits back into an integer result – for example in this function

[Process16MagPha]'ver111-33a

 if cb = 3 then 'USB:01-08-2010

 magdata = UsbAdcResult1

 phadata = UsbAdcResult1

 return

 end if

MSA USB Interface – Changes to MSA Basic code Page 4 of 11

Setting the MSA outputs

There are several different methods used to drive the hardware. One would suffice but we need to code around Liberty basic. These are probably
not the best ways to do it but it works……

Why landscape format? Some of these code lines are a bit long!

Method 1 – using integers

This is the method used for the CommandPLLSlim function.

Here is the coding for the parallel port SLIM

[CommandPLLslim]'needs:datavalue,levalue,N23-N0,control,Jcontrol,port,contclear,LEPLL ; commands N23-N0,SLIM ControlBoard ver111-28

 'used during initialization of PLL1, PLL2, and PLL3. PDM will get set to "0" during Initializations

 'selt word = 1 common clock, 4 datas, plus 3 (filtbank). entering this sub, selt word should = filtbank only

 'init word = 5 latch lines plus 2 pdm commands. entering this sub, init word should = pdmcmd + pdmclk only.ver111-39d

 'two steps to do: command data and clock without disturbing Filter Bank, then send LE without disturbing PDM

 'step 1. Command the PLL without changing the filter bank.

 'For PLL1,datavalue=2, for PLL2,datavalue=16, for PLL3,datavalue=8

 'following code lines changed in ver113-3c

 a=filtbank + N23*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N22*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N21*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N20*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N19*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N18*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N17*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N16*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N15*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N14*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N13*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N12*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N11*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N10*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N9*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N8*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

MSA USB Interface – Changes to MSA Basic code Page 5 of 11

 a=filtbank + N7*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N6*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N5*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N4*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N3*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N2*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N1*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 a=filtbank + N0*datavalue:out port, a:out control, SELT:out control, contclear:out port, a+1:out control, SELT:out control, contclear

 out port, filtbank:out control, SELT:out control, contclear 'leaving lines latched to filter bank

 out port, 0

 'step 2. Command the PLL without changing the PDM

 pdmcommand = phaarray(thisstep,0)*64 'do not disturb PDM state, this may be used during Spur Test

 out port, pdmcommand + levalue 'levalues: PLL1=1, PLL2=16, PLL3=4

 out control, INIT

 out port, pdmcommand

 out control, contclear 'leaving lines latched, and unchanged, to PDM

 out port, 0

 return 'to [CommandPLL]

This function takes a set of bits N0..N23, a datavalue that corresponds to the bit used for the specific IO line and a fixed value filtbank. It clocks
the data sequentially.

The USB equivalent is this

[CommandPLLslimUSB] 'USB:01-08-2010

 if USBdevice = 0 then return

 CALLDLL #USB, "UsbMSADeviceWriteInt64MsbFirst", USBdevice as long, 161 as short, Int64N as ptr, 24 as short, 1 as short, _

filtbank as short, datavalue as short, result as boolean 'USB:11-08-2010

 pdmcommand = phaarray(thisstep,0)*64 'do not disturb PDM state, this may be used during Spur Test

 USBwrbuf$ = "A30200"+ToHex$(pdmcommand + levalue)+ToHex$(pdmcommand)

 CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as long, USBwrbuf$ as ptr, 5 as short, result as boolean

 Return

This function shows the main integer output function, UsbMSADeviceWriteInt64MsbFirst as well as another method used, UsbMSADeviceWriteString.
Let’s look at the first one.

 CALLDLL #USB, "UsbMSADeviceWriteInt64MsbFirst", USBdevice as long, 161 as short, Int64N as ptr, 24 as short, 1 as short, _

filtbank as short, datavalue as short, result as boolean 'USB:11-08-2010

MSA USB Interface – Changes to MSA Basic code Page 6 of 11

All the output methods all get to the USB controller via the same interface but the DLL provides several ways to get these, and these are two of
them.

In this first one, we have a simple but flexible helper in the DLL that handles the things Liberty does badly but keeps the flexibility in the MSA
Basic program for making changes. The parameters are as follows

USBdevice as long, This is the handle to the USB device – we need this always

161 as short, This is the hex command code 0xA1 which tells the USB controller

that this is a write to port B

Int64N as ptr, This is a 64 bit integer formed as two unsigned longs in a

structure. We’ll cover this in a moment

24 as short, This is the number of bits in the 64 bit integer to clock out

1 as short, _ This is the clock bit – toggle port B bit 0 to clock the data

filtbank as short, This is the fixed value for the port data

datavalue as short, This is the variable bit to add to the fixed part for every ‘1’ bit

in the 64 bit integer

result as boolean And the mandatory true / false success flag

So that 64 bit structure. It looks like this

 struct Int64N, msLong as ulong, lsLong as ulong

and the basic program just bungs the data value in instead of turning it into bits in N0-N23 for example as shown below. If we are using the USB
interface, put the value required into Int64, otherwise set the N0..23 values. This is the simplest example, some get more complex.

 '[CreateIFNbuffer2350]'needed:nothing,since IF section is turned off(N22=1)

 if cb = 3 then

 Int64N.lsLong.struct = 4472833 ' 4472833 = 0x444001 = 10001000100000000000001

 Int64N.msLong.struct = 0

 else

 N23=0 'IF counter reset, 0=normal operation

 N22=1 'Power down mode for IF section, 1=powered down, 0=powered up

 N21=0 'PWN Mode, 0=async 1=syncro

 N20=0 'Fastlock, 0=CMOS outputs enabled 1= fastlock mode

 N19=0 'test bit, leave at 0

 N18=1 'OUT 0, 1

 N17=0 'OUT 1, 0

MSA USB Interface – Changes to MSA Basic code Page 7 of 11

 N16=0 'IF N Bcounter 12 Bits MSB bit 11

 N15=0 'IF N Bcounter, bit 10, '512 = 0010 0000 0000

 N14=1 'IF N Bcounter, bit 9

 N13=0 'IF N Bcounter, bit 8

 N12=0 'IF N Bcounter, bit 7

 N11=0 'IF N Bcounter, bit 6

 N10=0 'IF N Bcounter, bit 5

 N9=0 'IF N Bcounter, bit 4

 N8=0 'IF N Bcounter, bit 3

 N7=0 'IF N Bcounter, bit 2

 N6=0 'IF N Bcounter, bit 1

 N5=0 'IF N Bcounter, 12 Bits, LSB bit 0

 N4=0 'bit 2, IF N Acounter 3 Bits MSB

 N3=0 'bit 1, 0 = 000 thru 7 = 111

 N2=0 'bit 0, IF N Acounter 3 Bits LSB

 N1=0 '2350 IF_N register, 2 bits, must be 0

 N0=1 '2350 IF_N register, 2 bits, must be 1

 end if

 gosub [CommandPLL]'needs:N23-N0,control,Jcontrol,port,contclear,LEPLL ; commands N23-N0,old ControlBoard ver111

Ok, that’s the integer method. Remember the string one in the above example?

 pdmcommand = phaarray(thisstep,0)*64 'do not disturb PDM state, this may be used during Spur Test

 USBwrbuf$ = "A30200"+ToHex$(pdmcommand + levalue)+ToHex$(pdmcommand)

 CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as long, USBwrbuf$ as ptr, 5 as short, result as boolean

This is a simple interface where we create a hex string with the USB controller command and ask the DLL to just send it direct. Command A3 is
“write to port D”, 02 is the number of bytes to write (2) the clock line is 00 so the interface will not do autoclocking. Thre are then two bytes
added which are the values in the ToHex$() functions. These two bytes are written one after the other to port D by the USB controller.

Those are the easy interfaces. However there is one more complex one. In fact it is unnecessary for two reasons. The above functions could be
used but then Liberty basic would make it really very slow as it can’t handle bytes efficiently. Secondly it would be possible to rewrite the code
to just calculate the parameters for each step in the scan on the fly but this would need to be removed from the Basic code and done in the DLL
for speed and then we would start to lose flexibility in the basic code, so for both these reasons a method has been used that is very similar to the
existing code design.

MSA USB Interface – Changes to MSA Basic code Page 8 of 11

The current code creates a series of arrays such as dim PLL1array(800,48), so we create a memory block equivalent for __int64 values

 hSPLL1Array = GlobalAlloc(DeviceArrayBlockSize) 'USB:06-08-2010

 ptrSPLL1Array = GlobalLock(hSPLL1Array) 'USB:06-08-2010

The first variable is a handle that is used for management, the second is a pointer to a block in memory. We can pass this to the DLL and the
DLL will store the binary data in it, so for example in the Basic code we find this (comments removed for ease of visualising the code). The first
part of the code up to the line before the w0 setting calculates the desired data – an integer value ‘base’. We then store it in 4 integers w0..w4 for
the parallel interface (this could also be skipped for USB but has been left in for diagnostics). Now the USB code. Put the value of base into a 64
bit integer so we can store it. Then the else clause – for the parallel interface serial control chop it into individual bits sw0..sw39. This is why we
use a 64 bit integer – we have more than 32 bits of data even if lots are zero.

[CreateBaseForDDSarray]'needed:ddsoutput,ddsclock ; creates: base,sw0thrusw30,w0thruw4

fullbase=(ddsoutput*2^32/ddsclock) 'decimal number, including fraction

if ddsoutput >= ddsclock/2 then

 beep:message$="Error, ddsoutput > .5 ddsclock" : call PrintMessage :goto [Halted] 'ver114-4e

 end if

 base = int(fullbase) 'rounded down to whole number

 if fullbase - base >= .5 then base = base + 1 'rounded to nearest whole number

 w0= 0 'a "1" here will activate the x4 internal multiplier, but not recommended

 w1= int(base/2^24) 'w1 thru w4 converts decimal base code to 4 words, each are 8 bit binary

 w2= int((base-(w1*2^24))/2^16)

 w3= int((base-(w1*2^24)-(w2*2^16))/2^8)

 w4= int(base-(w1*2^24)-(w2*2^16)-(w3*2^8))

 if cb = 3 then

 Int64SW.msLong.struct = 0

 Int64SW.lsLong.struct = int(base)

 else

'Create Serial Bits'needed:base ; creates serial word bits; sw0 thru sw39

 b0 = int(base/2):sw0 = base - 2*b0 'LSB, Freq-b0. sw is serial word bit

 b1 = int(b0/2):sw1 = b0 - 2*b1:b2 = int(b1/2):sw2 = b1 - 2*b2

 b3 = int(b2/2):sw3 = b2 - 2*b3:b4 = int(b3/2):sw4 = b3 - 2*b4

 b5 = int(b4/2):sw5 = b4 - 2*b5:b6 = int(b5/2):sw6 = b5 - 2*b6

 b7 = int(b6/2):sw7 = b6 - 2*b7:b8 = int(b7/2):sw8 = b7 - 2*b8

 b9 = int(b8/2):sw9 = b8 - 2*b9:b10 = int(b9/2):sw10 = b9 - 2*b10

 b11 = int(b10/2):sw11 = b10 - 2*b11:b12 = int(b11/2):sw12 = b11 - 2*b12

 b13 = int(b12/2):sw13 = b12 - 2*b13:b14 = int(b13/2):sw14 = b13 - 2*b14

 b15 = int(b14/2):sw15 = b14 - 2*b15:b16 = int(b15/2):sw16 = b15 - 2*b16

 b17 = int(b16/2):sw17 = b16 - 2*b17:b18 = int(b17/2):sw18 = b17 - 2*b18

 b19 = int(b18/2):sw19 = b18 - 2*b19:b20 = int(b19/2):sw20 = b19 - 2*b20

MSA USB Interface – Changes to MSA Basic code Page 9 of 11

 b21 = int(b20/2):sw21 = b20 - 2*b21:b22 = int(b21/2):sw22 = b21 - 2*b22

 b23 = int(b22/2):sw23 = b22 - 2*b23:b24 = int(b23/2):sw24 = b23 - 2*b24

 b25 = int(b24/2):sw25 = b24 - 2*b25:b26 = int(b25/2):sw26 = b25 - 2*b26

 b27 = int(b26/2):sw27 = b26 - 2*b27:b28 = int(b27/2):sw28 = b27 - 2*b28

 b29 = int(b28/2):sw29 = b28 - 2*b29:b30 = int(b29/2):sw30 = b29 - 2*b30

 b31 = int(b30/2):sw31 = b30 - 2*b31 'MSB, Freq-b31

 sw32 = 0 'x4 multiplier, 1=enable, but not recommended

 sw33 = 0 'control bit

 sw34 = 0 'power down bit

 sw35 = 0 'phase data

 sw36 = 0 'phase data

 sw37 = 0 'phase data

 sw38 = 0 'phase data

 sw39 = 0 'phase data

end if

 return

Now the data is stored. For the parallel port, it is stored in the two dimensional DDS1array. For the USB interface we tell the DLL to store it in
the memory block we allocated earlier (preSDDS1Array.

[FillDDS1array]

 if cb = 3 then

 if USBdevice <> 0 then CALLDLL #USB, "UsbMSADevicePopulateDDSArray", USBdevice as long, ptrSDDS1Array as ulong, _

Int64SW as ptr, thisstep as short, result as boolean

 else

 DDS1array(thisstep,0) = sw0:DDS1array(thisstep,1) = sw1

 DDS1array(thisstep,2) = sw2:DDS1array(thisstep,3) = sw3

 DDS1array(thisstep,4) = sw4:DDS1array(thisstep,5) = sw5

 DDS1array(thisstep,6) = sw6:DDS1array(thisstep,7) = sw7

 DDS1array(thisstep,8) = sw8:DDS1array(thisstep,9) = sw9

 DDS1array(thisstep,10) = sw10:DDS1array(thisstep,11) = sw11

 DDS1array(thisstep,12) = sw12:DDS1array(thisstep,13) = sw13

 DDS1array(thisstep,14) = sw14:DDS1array(thisstep,15) = sw15

 DDS1array(thisstep,16) = sw16:DDS1array(thisstep,17) = sw17

 DDS1array(thisstep,18) = sw18:DDS1array(thisstep,19) = sw19

 DDS1array(thisstep,20) = sw20:DDS1array(thisstep,21) = sw21

 DDS1array(thisstep,22) = sw22:DDS1array(thisstep,23) = sw23

 DDS1array(thisstep,24) = sw24:DDS1array(thisstep,25) = sw25

 DDS1array(thisstep,26) = sw26:DDS1array(thisstep,27) = sw27

 DDS1array(thisstep,28) = sw28:DDS1array(thisstep,29) = sw29

 DDS1array(thisstep,30) = sw30:DDS1array(thisstep,31) = sw31

 DDS1array(thisstep,32) = sw32:DDS1array(thisstep,33) = sw33

MSA USB Interface – Changes to MSA Basic code Page 10 of 11

 DDS1array(thisstep,34) = sw34:DDS1array(thisstep,35) = sw35

 DDS1array(thisstep,36) = sw36:DDS1array(thisstep,37) = sw37

 DDS1array(thisstep,38) = sw38:DDS1array(thisstep,39) = sw39

 end if

 DDS1array(thisstep,40) = w0

 DDS1array(thisstep,41) = w1

 DDS1array(thisstep,42) = w2

 DDS1array(thisstep,43) = w3

 DDS1array(thisstep,44) = w4

 DDS1array(thisstep,45) = base

 DDS1array(thisstep,46) = base*ddsclock/2^32

 return

Now the final bit – how is it used. In the parallel port code the data in each of the arrays like DDS1Array is combined into a per step overall
array thus whereas in the Usb version the DLL does the same thing on the arrays of integers.

[CreateCmdAllArray] 'for SLIM CB only 'ver-31b

 rememberthisstep = thisstep 'remember where we were when entering this subroutine

 if cb <> 3 then

 for thisstep = 0 to steps

 for clmn = 0 to 15

 cmdallarray(thisstep,clmn) = DDS1array(thisstep,clmn)*4 + DDS3array(thisstep,clmn)*16

 next clmn

 for clmn = 16 to 39

 cmdallarray(thisstep,clmn) = PLL1array(thisstep,clmn-16)*2 + DDS1array(thisstep,clmn)*4 + _

PLL3array(thisstep,clmn-16)*8 + DDS3array(thisstep,clmn)*16

 next clmn

 next thisstep

 else

 if USBdevice <> 0 then CALLDLL #USB, "UsbMSADevicePopulateAllArray", USBdevice as long, steps as short, 40 as short, _

 0 as long, ptrSPLL1Array as long, ptrSDDS1Array as long, ptrSPLL3Array as long, _

 ptrSDDS3Array as long, 0 as long, 0 as long, 0 as long, _

 result as boolean 'USB:11-08-2010

 end if

 thisstep = rememberthisstep

 return

By the way, that function that put the data into the array? There are two forms of it – the other one bit reverses the data as it is put in – this is
because the PLL data is clocked in the opposite direction.

MSA USB Interface – Changes to MSA Basic code Page 11 of 11

And the final part – commanding all slims at once. For parallel port it looks like this (stripped of comments)

 [CommandAllSlims]'for SLIM Control and SLIM modules. Old PDM and old Filt Bank can be used 'ver111-31c

 for clmn = 0 to 39 'ver113-3c

 a= cmdallarray(thisstep,clmn)+ filtbank

 out port, a : out control, SELT:out control, contclear 'a is the data, without clock

 out port, a+1:out control, SELT:out control, contclear 'a+1 is data, plus clock

 next clmn

 out port, filtbank 'remove data, leaving filtbank data to filter bank.

 out control, SELT:out control, contclear 'disable buffer. filtbank signals will be latched to filter bank assembly

 pdmcmd = phaarray(thisstep,0)*64 'ver111-39d

 out port, le1 + fqud1 + le3 + fqud3 + pdmcmd 'present data to buffer input'ver111-39d

 out control, INIT: out control, contclear 'latch the buffer, moving the signals to the 5 modules'ver113-2a

 out port, pdmcmd + 32 'remove LEs and Fquds, leaving PDM data, but add a latch signal P2D5 for old PDM if used.'ver111-39d

 out control, INIT: out control, contclear 'sends latch signal to old PDM'ver113-2a

 out port, pdmcmd 'remove the added latch signal to PDM, leaving just the PDM's static data'ver111-39d

 out control, INIT: out control, contclear 'ver113-2a

 out port, 0 'bring all Data lines low. PDM data remains static

 lastpdmstate=phaarray(thisstep,0) 'ver114-6c

 return 'to [CommandThisStep]

and for USB this

[CommandAllSlimsUSB] 'USB:01-08-2010

 if USBdevice = 0 then return

 CALLDLL #USB, "UsbMSADeviceAllSlims", USBdevice as long, thisstep as short, filtbank as short, result as boolean 'USB:11-08-2010

 pdmcmd = phaarray(thisstep,0)*64 'ver111-39d

 USBwrbuf$ = "A30300"+ToHex$(le1 + fqud1 + le3 + fqud3 + pdmcmd)+ToHex$(pdmcmd + 32)+ToHex$(pdmcmd)

 CALLDLL #USB, "UsbMSADeviceWriteString", USBdevice as long, USBwrbuf$ as ptr, 6 as short, result as boolean

 lastpdmstate=phaarray(thisstep,0) 'ver114-6c

 return

Ok, the operation of the DLL will be the next document…..

73’s
Dave
G8KBB

