N2PK VNA USB Interface design guide

N2PK VNA USB Interface guide
Dave Roberts G8KBB

This version includes software changes up to and including v0.22
This document describes the design of a software module for the N2PK VNA. It describes a windows driver for a Cypress FX2 USB chip operating to USB 2.0 specifications at either Full (12 Mbit/s) or High (480 Mbit/s) speeds. It would be a simple matter to reuse the structures and methods for other projects. The software comprises a number of parts as follows:

1. The code executed on the FX2 USB chip

2. A driver to download the above code to the chip automatically

3. INF & CAT files to install the above drivers

4. A DLL that may be used to communicate to the device

5. Example code showing how to directly communicate with or without the DLL

In addition the Cypress ezusb.sys driver is used. This is to allow easy development and debugging and may change with time. Parts of the code are covered by the GPL licence. In addition if you use the code for another project other than the N2PK VNA, I place an additional licence requirement on you – to give a talk on your project at your local radio club or write a paper on it.

The unit supports 2 ADCs, either or both of which may be LTC2440. It supports either a simple raw interface (the PC may set or clear any output line and read any input from the VNA), or a complex interface that allows a command string to be sent to the USB chip. This interface causes it to autonomously configure the DDSs and perform a series of ADC reads returning the data in a single USB frame.
1. Hardware

There is nothing special about the hardware. Any of a number of ‘off the shelf’ Cypress FX2 USB modules may be used. I used the Elrasoft unit for my prototype. It is hoped that a bespoke unit may be produced that may also have wider amateur application. The module need only bring out ports A and B to connect to the VNA and have a USB connection to the PC. In order for the download driver to work, the VID and PID need to be set properly. This is subject to change – drop me a line if you want details. At the moment I am using the Cypress Anchor VID & ezusb.sys in order to be able to use the Cypress USB EZmgr application for debugging. Details for changing the VID and PID may be found in the Cypress Application Note “EZ Loader Custom USB Firmware Loader Driver”. A brief step by step guide is shown later in this document. If you need to rebuild the download driver, this is also the document to consult for step by step instructions. If you want to use the current configuration of code, the eeprom on the fx2 module should identify itself with the Cypress VID of 0x0547 and a PID of 0x1004. The PID changes to 0x1005 after the FX2 code is downloaded by n2pkvld.sys.
The code should run on any member of the FX2 family. Note that there is a new part available – the FX2LP. This latter part is preferred as it is lower power, and an FX2 running at high speed is a hungry beast. It should also be possible to port the code to the FX series but I have not done so.
2. Port Definitions

There are two 8 bit ports defined so far, of which one is used for the ‘original’ VNA. The USB chip is bus powered so can tell the PC if the VNA is powered up. Ian G3SEK suggested investigating whether the USB port can be used to power the whole VNA. This is under investigation (still). Note that a change was made in the version 0-11 drivers for the USB interface. The ADC1 clock and chip select signals have been removed from portA. The CS has moved to PortB bit 5 and the clock is now shared between ADC1 and ADC2 and uses PortB bit 0. If you use a driver prior to V0-11, you MUST use the old pinout. If you use V0-11 or later you MUST use the new pinout.
// bit definitions for IO ports

//

// PortA main VNA I/O

//

#define bmADCnSdoPin bmBIT7 // Input bit

#define bmLoDdsDataPin bmBIT6

#define bmRfDdsDataPin bmBIT5 // rf data shares pin with

#define bmAdcSdiPin bmBIT5 // adc serial data in

#define bmResetDdsPin bmBIT4

#define bmWClkDdsPin bmBIT3

#define bmFQUDDdsPin bmBIT2

#define bmSwitch1Pin bmBIT1 // was ADC1 CS prior to Nov 2006
#define bmSwitch0Pin bmBIT0 // was ADC1 SCLK prior to Nov 2006
// bit definitions for IO ports

//

// PortB second VNA I/O port

//

#define bmADC2nSdoPin bmBIT7 // Input bit

#define bmVNAPower bmBIT6 // Input bit
#define bmADC1CsPin bmBIT5 // was unused prior to Nov 2006
#define bmAtten2 bmBIT4

#define bmAtten1 bmBIT3

#define bmAtten0 bmBIT2
#define bmADC2nCsPin bmBIT1

#define bmADCSClkPin bmBIT0 // Now shared SCLK for both ADCs
The CPU is an enhanced 8051 core with a 48 MHz clock. The compiled C takes 80 µsec to update the DDSs and 110 µsec to read an ADC after a conversion (140 µsec for simultaneous ADC readings from the 2 ADCs). The minimum delay between a DDS setting and starting an ADC conversion is 22 µsec. This may be extended in 8 µsec intervals to 2.05 msec, or in 1msec intervals to 255 msec. These timings are for V0-11 driver. More information on driver timings, waveforms and operating principles may be found in the document “N2PK VNA USB Interface – supplemental data”
The pin-out differs from the parallel port definitions in two ways. First, the order of pins is different. It reflects the order of pins on the 10 way connector on the VNA and the corresponding sequence of pins on the FX2 chip pin-out with the exception of ADC1 CS. This is to simplify wiring. Secondly, it used to differ in that the second ADC had separate clock. This was to make it easier to control the ADCs given the way that this software worked. This has now changed to mirror the N2PK standard port assignments. Port B carries the clock for both ADCs as well as both ADC CD signals. Port B also carries a line for power detection. This is used to detect 5V from the VNA power supply. DO NOT connect it straight to 5V unless you have a penchant for cruelty to chips. Instead, connect a 10K resistor in series. Note that the input pins of the FX2 are 5V tolerant. The output pins drive to 3.3V not to 5V but this should work fine with the VNA. There are now two general purpose switching lines on port A. Port D is not used.
3. Commands

There are four commands that may be sent to the chip, a set command, a sweep command, a config command and a raw command. Each is sent as a single I/O write as a sequence of bytes.
USB endpoint 2 is used for data out from the PC to the USB chip, and endpoint 6 is used for packets in from the USB chip to the PC.
Unless temporarily disabled with the CmdVnaSetDdsFlagsPauseDataIn flag, there is always a response frame available for reading (otherwise reading the VNA USB endpoint would stall the thread). The implication of this is that after writing a command, it will be visible in the response on the second read. If the code is built with double buffering (an option in the source code) two such frames will exist in the buffer an it will be visible on the third.
3.1. Raw command

This command is used either for raw low level access to the IO ports, to set the attenuator or the switch.

The raw command takes at least 5 bytes and the message is structured thus:

Command | flags | PortA | PortB | Atten
However there are two extra bytes that may be added. The message may therefore be 5, 6 or 7 bytes long.

Command | flags | PortA | PortB | Atten | PortD | Switch
The command is a fixed byte (0x5A). The flags are defined below. PortA and PortB are two 1-byte values written to the ports. The power on state of all lines is input. The USB-reset state of all lines is low on output lines. Note that writing to lines marked as inputs has no effect and reading from lines marked as outputs returns the current setting. The Atten value is ignored if > 7, otherwise the attenuator bits are set to the corresponding 3 bit pattern. To set the attenuator, set the flags to 0x20, dummy data for the ports and a value 0x00 – 0x07 for the Atten setting.
// bit definitions for Flags

#define CmdVnaRawDataFlagsWriteA bmBIT7 //if set, write specified value to port A

#define CmdVnaRawDataFlagsWriteB bmBIT6 //if set, write specified value to port B
#define CmdVnaRawDataFlagsSetAtt bmBIT5 //if set, set attenuator value

Undefined bits in the flags should be set to zero for future compatibility.
The new flags added to this release are:

#define CmdVnaRawDataFlagsWriteD bmBIT4 //if set, write specified value to port A

#define CmdVnaRawDataFlagsSetSw bmBIT3 //if set, write specified value to port B
If writing to port D the message must be 6 bytes long. If writing to the switch bits, it must be 7 bytes long. If CmdVnaRawDataFlagsWriteD is set, then the value in “PortD” (byte 6) is written to the PortD output register. If CmdVnaRawDataFlagsSetSw is set, then the leat 2 significant bits (bits 0 and 1) are written to the switch outputs 0 and 1. If any other bits are set in the byte, then the switch settings are not updated. Note that when writing to the switch bits, byte 6 must be present even if port D is not being set. The value of byte 6 will be ignored if CmdVnaRawDataFlagsWriteD is not set.
3.2. Set command

The set command takes 15 bytes in its normal form. An extended form of the set command is described later but for clarity this will not be included in the basic definition below. The 15 bytes are structured thus:

Command | flags | ADCdelay | ADCcount | ADCmode | LoDDS (5 bytes) | RfDDS (5 bytes)

The Command byte is a fixed byte (0x55). Flags are defined below. The ADCdelay is the minimum number of msec or multiples of 8 µsec to delay after writing the DDS until starting the ADC read. The ADCcount is the number of consecutive ADC reads to perform before returning the set of values in a single frame to the PC. ADCmode is a flag that determines whether to use ADC1 or ADC2 or both and (if the LTC2440 is being used) the 5 bit OSR value. The last 10 bytes are the values to write to the two DDS chips. Each DDS word is msbyte first so bit 0 of the last byte is the least significant bit of the DDS frequency control. If the DDS is not being set, these 10 bytes are ignored but must be present for the interface to accept the command. Dummy data is fine in this case. Note that there is a limit on the number of ADC reads that will be accepted. This limit is compiled into the FX2 code and currently set to 30. If the value of ADCcount is greater than the limit, the number of reads will be set to the limit.
From build 22 of the drivers, the function of ADCcount has changed. The lower 5 bits are the count, the upper 3 bits control the switch lines. If the most significant bit is set, the switch lines are changed to the settings defined by the next 2 bits at the same time that the frequency is changed with FQ_UD. This is to support single detector RF I-V measurements.
Bit definitions for the set command flags are:

// bit definitions for Flags

#define CmdVnaSetDdsFlagsReset bmBIT7 //if set, reset DDS before loading

#define CmdVnaSetDdsFlagsDdsSet bmBIT6 //if set, set the DDS to values given
#define CmdVnaSetDdsFlagsDelayIsUsec bmBIT5 //if set, changes ADC start delay mode
#define CmdVnaSetDdsFlagsPauseDataIn bmBIT4 //if set, pauses data IN frames
#define CmdVnaSetDdsFlagsPauseDataOut bmBIT3 //if set, pauses data OUT frames
#define CmdVnaSetDdsFlagsDdsSetSingleFunction bmBit2 // if set separates DDS functions

#define CmdVnaSetDdsFlagsDoubleConvert bmBIT1 // if set use second DDS set in 2 conversions
#define CmdVnaSetDdsFlagsPreloadDDS bmBIT0 // if set preload DDS during ADC conversions
Undefined bits in the flags should be set to zero for future compatibility. bmBIT1 is no longer an undefined bit – it has a specific function in the extended command setting described later in this document.
Bit definitions for the ADCmode are as follows:

#define CmdVnaSetDdsAdcModeDet2 bmBIT7 //if set use second detector

#define CmdVnaSetDdsAdcSimultaneous bmBIT6 //if set use both detectors
// bits 5 unused – set these to zero
// bits 4..0 are LTC2440 OSR4..0

If the LTC2410 is being used as in the original VNA ‘slow’ detector, the OSR has no effect. In the LTC2440, it determines the conversion rate. If bit 7 is set, the USB chip will attempt to use ADC2 instead of ADC1. Again, this may be either an LTC2410 or 2440. If bit 6 is set, the chip will convert on both ADCs simultaneously, returning two sets of readings. In this case the number of ADC conversions returned will be double the number requested, with interleaved data – each set of 8 bytes is ADC1’s reading followed by ADC2. A timeout on EITHER ADC will abort the conversions. If one ADC is a 2410 and the other a 2440, the conversion will proceed at the speed of the slowest – the 2410.
If the DDS chips are reset, (CmdVnaSetDdsFlagsReset is set) the code will perform the following sequence of steps. First it will pulse the reset pin high then low to reset the chip. After that it pulses first the clock and then FQ_UD in order to put the DDS into serial mode. This results in an undefined DDS frequency being set. It is therefore recommended that the DDS be configured in the same command. Note also that if a DDS reset is performed and ADC conversions in progress are aborted.
The DDS are set only if the flag CmdVnaSetDdsFlagsDdsSet is set. If the DDS is not set (for example ADC reads are being performed but no DDS change) then the 10 bytes of DDS data are ignored.

If the flag CmdVnaSetDdsFlagsDelayIsUsec is set, then the time delay before an ADC conversion starts is not timed in measures of 1 msec, but instead in 8 µsec intervals. Hence if the flag is clear, the delay specified by ADCdelay is in 1 msec units, from 0 to 255 msec. If the flag is set however, the time delay between the toggling of the DDS FQ_UD pin and the start of the ADC conversion is (12 + 8*ADCdelay) µsec. The 12 µsec is the time taken by the code to get from FQ_UD to starting ADC conversion. The ADCcount increases this in increments of 8 µsec. Therefore a setting of, say, 4, would give a delay of 44 µsec.

Normally, the chip ensures that an IN frame is always available for the PC to read to indicate status. This is not always wanted, for example the code might simply want to wait until the results of a block of ADC conversions is complete. If the CmdVnaSetDdsFlagsPauseDataIn flag is set, then the chip will suspend the generation of IN frames until the requested set of ADC conversions is complete or until there is a timeout (for example if the VNA is not responding). Note that when using this, there may be one or more frames of data buffered ready for sending to the PC – the generation of frames will pause after these have been processed. It will start again automatically on completion.

In a similar fashion the CmdVnaSetDdsFlagsPauseDataOut flag may be used to ensure correct processing of overlapped data commands from the PC. If the flag is not set, a new set command will terminate any current processing. Therefore if the chip were part way through processing a sequence of ADC reads, a new set command would terminate that and start the new command being processed. This is the simplest mode of operation as the PC would normally ask the chip to process, then wait for the result. However, in some cases or high speed, the PC may want to ‘stack up’ requests to be processed as soon as possible and read the result as available. Setting this flag means that new commands will not be processed until old ones are complete. The implication of this is that the thread on the PC sending data will stall until the data are transferred.

If the CmdVnaSetDdsFlagsDdsSetSingleFunction bit is set it alters the way that the DDS is controlled. If this bit is clear, then as described above setting the CmdVnaSetDdsFlagsDdsSet flag sets the DDS control resister AND pulses FQ_UD. If the single function bit is set however this is not the case. It causes one or other of the DDS register loading function or FQ_UD pulsing functions to be executed but not both of them. With the DdsSet bit set and the SingleFunction bit set, then the DDS 40 bit registers will be loaded but FQ_UD will not be pulsed. With DdsSet bit clear and SingleFunction set, then the DDS 40 bit registers are not affected but FQ_UD is pulsed. This is summarised in the following table:
	DdsSet Bit
	SingleFunction Bit
	Effect

	Clear (0)
	Clear (0)
	DDS register not affected, FQ_UD not affected

	Clear (0)
	Set (1)
	DDS register not affected, FQ_UD pulsed

	Set (1)
	Clear (0)
	DDS register changed AND FQ_UD pulsed

	Set (1)
	Set (1)
	DDS register changed, FQ_UD not affected

3.2.1. Extended Set Command
With firmware V0-11, the Set command has been extended. There is an additional command flag defined:

#define CmdVnaSetDdsFlagsDoubleConversion bmBit1 // if set separates DDS functions
If this flag is set, then the interface expects an additional 10 bytes of data to be appended to the command. If this data is not presen, then this flag is ignored.

The additional data set comprises a second LoDDS setting and a second RfDDS setting, each of 5 bytes in length. If this data is present and the command flag is set then the operation of the part is as follows. Assume for now that ADC conversions are requested and the DDS is set.

1. The DDS is set to the first pair of settings (LO and RF)

2. ADC conversions are initiated

3. Immediately the ADC conversions start, and in parallel with them, the second set of DDS settings are loaded into the DDS chips but the FQ_UD pin is not pulsed, so the DDS chips remain at the first settings

4. Immediately the ADC conversions complete, the results are read and the DDS FQ_UD pin is pulsed to change the DDS frequencies

5. ADC conversions are again initiated

6. When complete all ADC readings are returned to the PC.

This means that a pair of readings are taken as fast as possible. Examples of the timing on this can be seen in the companion report. The following should be noted however

· The function makes no sense and will not work unless ADC conversions are requested in the message

· If multiple ADC conversions are requested, then that number of conversions will be made in step 2 and again in step 5.

· The ADC conversions may be on one, the other, or both ADCs concurrently. Therefore if N conversions are requested with simultaneous ADC conversions then 4N results will be returned. To limit the amount of data, the interface divides the max ADC conversions limit in half for this mode of operation

· If the single function flag is set then both sets of DDS data must be present in both messages. (this mode of operation is untested – I suggest you do not use it)

3.2.2. Overlapping DDS and ADC operation
With firmware v0.21 it is possible to overlap DDS and ADC operation.

Typical operation for high speed is to use the PauseDataOut flag to allow a second command to be buffered in the USB controller chip whilst the previous one is being processed. As soon as the chip has finished with the first command it will process the next one without the time delay associated with the PC sending more data. This misses a trick however. During an ADC conversion in a previous command, it would be nice to be able to load the DDS with the next data set to save time. This may be achieved by setting the CmdVnaSetDdsFlagsDoubleConvert bit. When the controller has started the ADC converting, it will “peek” at the next command, if any, and if it sees that a DDS load is required, and if the CmdVnaSetDdsFlagsDoubleConvert flag is set, it will immediately load the DDS but not pulse the FQ_UD line until it has completed the ADC conversion and looks at the next command properly. When it does so it will recognise that it has already completed the DDS load phase and skip the step, pulsing the FQ_UD line.
3.3. Sweep Command

The sweep command instructs the USB chip to automatically sweep the DDS chips across a specified frequency range. It will do this continuously until stopped with a set command or another sweep command.

The syntax of the command is as follows:

Command | flags | Stepdelay | Initdelay | Step (4 bytes) | LoDDS (5 bytes) | RfDDS (5 bytes) | LoDDSstep (5 bytes) | RfDDSstep (5 bytes)
The command byte is 0xAA. The flags as defined as:

#define CmdVnaSweepFlagsPulseSW1 bmBIT7 // set SW1 high when sweeping

#define CmdVnaSweepFlagsStepDelayIsUsec bmBIT6 // delay between steps is in usec

#define CmdVnaSweepFlagsInitDelayIsUsec bmBIT5 // delay between sweeps is in usec

If CmdVnaSweepFlagsPulseSW1 is set then at the start of every sweep the SW1 bit on port A is set. It is reset at the end of every sweep.

The two delay flags control the delay between steps and the delay between steps, and work in conjunction with the corresponding delay values, giving multiples of 8 microseconds or milliseconds. Do not set a microsecond delay count less than 0x10. Although it will work, there will be jitter between step times as there will not be enough time to do the updates before the timer indicates that the interval has completed.
The initial setting of each DDS is given by the LODDS and RFDDS values. At each step, the LODDS and RFDDS settings are incremented by adding the corresponding step values to each. Note that the addition is done in two parts – first the low order 4 bytes (the DDS frequency) are added. There is no overflow into the most significant byte. Secondly the most significant (phase) bytes are added but the code ensures that the low order 3 bits specified in the initial setting and not affected – if an overflow occurs only the most significant 5 bytes will wrap around.
The step value is a 4 byte integer count of the number of steps before restarting at the initial setting. The first byte is the most significant.
3.4. The Config command

The config command is used to set control parameters. At the moment only 2 are defined, a mode override and the minimum ADC startup delay.

The syntax is:

Command | flags | ModeValue | MinDelayValue

The command byte is 0xA5.

#define CmdVnaConfigureModeOverrideOn bmBIT7

#define CmdVnaConfigureModeDelayMin bmBIT6

If the mode override flag is set, then the byte in ModeValue is used to set the override on the ADC mode.

If the ModeDelayMin flag is set then the MinDelayValue becomes the new minimum setting for the ADC startup delay.

The ModeValue, if it takes a value from 0x00 to 0x0F, becomes the new ADC mode value and mode override is switched on. If the value is greater than 0x0F, then the mode override is switched off. If mode override is on, then whatever value of ADC mode is given in the SET command is ignored and replaced by the mode override value.

The MinDelayValue is the shortest permissible delay at the start of an ADC reading in the SET command. If it takes a value of 00, then the code imposes no minimum setting – it just runs as fast as it can.
The logic used by the code is as follows. If the ADCdelay in the SET command is zero, then the code internally sets the usec delay flag. If the usec delay flag is set, the code uses the largest value of the ADCdelay and the MinDelayValue.

The default value set in the code is 10, which corresponds to an approximate delay of 24 + 8*10, or about 100 usec, but subject to final tests may take a lower value – check the parameter DEFMINADCDELAY in the vna.h header file.

3.5. Read command
If the PC reads from the endpoint and there is no data there, the PC stalls until there is. To avoid this we always present a message to the PC. This is a string of at least 5 bytes as follows:

last_command_processed | flags | PortA | PortB | Number_of_ADC_reads_done
followed by Number_of_ADC_reads_done sets of 4 byte ADC data

Last_command_processed is a diagnostic – the value of the last command byte received and processed. The flags are defined below. PortA and PortB are the current snapshot of the reads of the ports (showing both input and output values). The Number_of_ADC_reads_done is a counter of ADC reads performed. The byte is set to zero when a sequence of reads starts, or after a set of ADC values have been returned and is incremented real time as ADC reads are performed. ADC data is only present when the ADC_data_available flag is set in which case the number of ADC reads byte indicates the number of ADC reads performed and for which data is included in the response (hence its length will be 5 + 4*(ADC_reads_done) bytes in length). When one ADC is used, the number of reads done will equal the number requested in the SET command. If simultaneous ADC conversions are requested by ADCmode, the ADC_reads_done will be twice the number of reads requested.
Bit definitions for the read message flags are:

// bit definitions for ReturnStatus

#define AdcReadTimeout bmBIT7 // attempt to read ADC timed out

#define VnaNoPower bmBIT6 // The VNA appears not to be powered up

#define AdcDataReady bmBIT5 // ADC data is available

#define AdcStartFlag bmBIT4 // set when ADC read is pending

#define AdcNotResponding bmBIT3 // set when ADC does not seem responsive
Hence a typical response with no ADC data might be

55 40 02 00 00
and a typical response with 5 ADC reads might be

55 60 02 00 05 00

In the above the ADC data is all zero. Note the flag shows ADC data present in this response and the read count is set to 5, so there are 20 bytes of ADC data present.
The AdcNotResponding flag should be treated with caution. It is a diagnostic. Having started an ADC conversion, the firmware quickly checks the ADC serial data out (SDO) pin to make sure it reads “busy”. If it does not then this bit is set. I have noticed however that sometimes the ADC signal does not cleanly change state as it should so this flag may be incorrect. Use it with caution.
4. Main command loop
In the next few sections, the main VNA specific code of the FX2 program is presented. If you re-use the design for other applications, this is the part that needs to change. The program is built on the FX2 “FW” model which is part of the cypress development tools. There are two main parts to this – fw.c that contains the main process handler and initialisation routines and periph.c that contains the VNA specific modules. A number of small changes were needed to fw.c and the bulk of the code as presented below is in periph.c. The entry point to the code shown is via TD_Poll() which is called repeatedly from fw.c.

This routine is called repeatedly by the main program loop. Note there are several sections to the code. The first handles outgoing messages from the PC. The second handles ADC operation and the last handles incoming messages to the PC. In between this are the extra handlers for the extended set command and sweep commands.
void TD_Poll(void) // Called repeatedly while the device is idle

{

if(PauseDataOut == FALSE)

handle_out();

if(AdcMode & CmdVnaSetDdsAdcModeSimultaneous) handle_both_adcs();

else if(AdcMode & CmdVnaSetDdsAdcModeDet2) handle_adc2();

else handle_adc1();

if(DoubleConvertState != 0)

handle_double_convert();

if(SweepState)

SweepFSM();

if(PauseDataIn == FALSE)

handle_in();

}
4.1. Manage data out from PC to USB

Note this is slightly simplified from the actual code but not functionally different.
void handle_out(void)

{

BYTE i;

WORD count;

// check EP2 EMPTY(busy) bit in EP2468STAT (SFR)

// indicates message waiting for VNA

if(!(EP2468STAT & bmEP2EMPTY))

{

// clear in data pause just in case

PauseDataIn = FALSE;

// find how big packet is

count = (EP2BCH << 8) + EP2BCL;

switch(EP2FIFOBUF[0])

{

case CmdVnaSetDds:

LastCommand = CmdVnaSetDds;

SweepState = 0;

// check command data is sufficient

if(count >= CmdVnaSetDdsSize)

{

// check if flags require a DDS reset before load

if(EP2FIFOBUF[CmdVnaSetDdsFlagsOfs] & CmdVnaSetDdsFlagsReset)

{

IOA |= bmResetDdsPin;

IOA &= ~bmResetDdsPin;

// we must now put it into serial mode.

// set clock pin high then low

IOA |= bmWClkDdsPin;

IOA &= ~bmWClkDdsPin;

// load partial 8 bit word

IOA |= bmFQUDDdsPin;

}

// finish reset process (FQ_UD) and put port into default state

IOA &= ~ bmFQUDDdsPin;

// check if DDS configuration is required, if so, write DDS data

if(EP2FIFOBUF[CmdVnaSetDdsFlagsOfs] & CmdVnaSetDdsFlagsDdsSet)

{

SetDDS(&EP2FIFOBUF[CmdVnaSetDdsLoOfs], &EP2FIFOBUF[CmdVnaSetDdsRfOfs]);

// 14 Sept 06

// if single function flag is set then do not pulse FQUD as we have just set the DDS

if((EP2FIFOBUF[CmdVnaSetDdsFlagsOfs] & CmdVnaSetDdsFlagsDdsSetSingleFunction)==0)

{

// load 40 bits of data to each DDS using FQ_UD pin

IOA |= bmFQUDDdsPin;

IOA &= ~ bmFQUDDdsPin;

}

}

// 14 Sept 06

// we have not updated the DDS freq resisters so if single function flag is set pulse FQUD

else if(EP2FIFOBUF[CmdVnaSetDdsFlagsOfs] & CmdVnaSetDdsFlagsDdsSetSingleFunction)

{

// load 40 bits of data to each DDS using FQ_UD pin

IOA |= bmFQUDDdsPin;

IOA &= ~ bmFQUDDdsPin;

}

// if double conversion requested, set state accordingly

DoubleConvertState = (EP2FIFOBUF[CmdVnaSetDdsFlagsOfs] & CmdVnaSetDdsFlagsDoubleConversion) &&

(count >= CmdVnaSetDdsSizeLong) ? 1 : 0;

// 14 Sept 06 - we should not affect ADC if we are just setting the DDS

// so if ADC reads is zero, skip all ADC related code below

if(EP2FIFOBUF[CmdVnaSetDdsAdcReads] != 0)

{

// into cache - we need it for second conversion.

// The optimised one copies just the bytes needed without a loop for speed.

for(i=1;i<CmdVnaSetDdsSizeLong;i++)

CacheCommand[i] = EP2FIFOBUF[i];

// no reads done yet, set counter to zero

AdcReadsDone = 0;

Startup_Adc(minAdcDelay);

ReturnStatus &= ~(AdcReadTimeout | AdcDataReady);

}

}

EP2BCL = 0x80; // re(arm) EP2OUT

break;

case CmdVnaRawData:

LastCommand = CmdVnaRawData;

// check command data is sufficient

if(count >= CmdVnaRawDataSizeMin)

{

// if flags indicate data write, write port A

if(EP2FIFOBUF[CmdVnaRawDataFlagsOfs] & CmdVnaRawDataFlagsWriteA)

IOA = EP2FIFOBUF[CmdVnaRawDataPortOfsA];

// if flags indicate data write, write port B

if(EP2FIFOBUF[CmdVnaRawDataFlagsOfs] & CmdVnaRawDataFlagsWriteB)

IOB = EP2FIFOBUF[CmdVnaRawDataPortOfsB];

if(EP2FIFOBUF[CmdVnaRawDataFlagsOfs] & CmdVnaRawDataFlagsWriteD)

IOD = EP2FIFOBUF[CmdVnaRawDataPortOfsD];

if(EP2FIFOBUF[CmdVnaRawDataFlagsOfs] & CmdVnaRawDataFlagsSetAtt)

{

if(EP2FIFOBUF[CmdVnaRawDataSetAtten] <= 7)

{

IOB &= ~(bmAtten2 | bmAtten1 | bmAtten0);

IOB |= EP2FIFOBUF[CmdVnaRawDataSetAtten] << 2;

}

}

if(EP2FIFOBUF[CmdVnaRawDataFlagsOfs] & CmdVnaRawDataFlagsSetSw)

{

IOA &= ~(bmSwitch1Pin | bmSwitch0Pin);

IOA |= EP2FIFOBUF[CmdVnaRawDataSetSwitch] & 3;

}

}

EP2BCL = 0x80; // re(arm) EP2OUT

break;

case CmdVnaConfigure:

LastCommand = CmdVnaConfigure;

// check command data is sufficient

if(count >= CmdVnaConfigureSizeMin)

{

// if flags indicate data write, update mode override value

if(EP2FIFOBUF[CmdVnaConfigureFlagsOfs] & CmdVnaConfigureModeOverrideOn)

{

ModeOverrideValue = EP2FIFOBUF[CmdVnaConfigureModeValue];

bOverrideMode = (ModeOverrideValue > 0x0f) ? 0 : 1;

ModeOverrideValue &= 0x0f;

}

if(EP2FIFOBUF[CmdVnaConfigureFlagsOfs] & CmdVnaConfigureModeDelayMin)

minAdcDelay = EP2FIFOBUF[CmdVnaConfigureMinDelayValue];

}

EP2BCL = 0x80; // re(arm) EP2OUT

break;

case CmdVnaSwpDds:

LastCommand = CmdVnaSwpDds;

if(count >= CmdVnaSweepSize)

{

for(i=1;i<CmdVnaSweepSize;i++)

CacheCommand[i] = EP2FIFOBUF[i];

SweepState = 1;

}

EP2BCL = 0x80; // re(arm) EP2OUT

break;

default: // Invalid request

LastCommand = 0;

EZUSB_STALL_EP0(); // Stall End Point 0

}

}

}
4.2. Manage ADC operation

// There are two main parts to this function – the first is executed

// when starting a series of ADC conversions, the other when doing conversions.

// When trying to start we need to manage the (possibly unknown) ADC state

// as it may have been converting or subject to a timeout

// the AdcStartFlag determines which code section is executed (if any)

// There are in fact two adc routines, one for ADC1 and one for ADC2.

// whilst it would be more compact to use one, it would be slightly slower.

// the one shown here is for ADC1.

// There is also a third version that interleaves ADC1 and ADC2 to provide simultaneous

// conversions. This is also not shown here.

void handle_adc1(void) // Called repeatedly while the device is idle

{

BYTE i,j,k,n;

// see if an ADC start is pending

if(ReturnStatus & AdcStartFlag)

{

// case 1 - we have just tried to abort a sequence and now need to start conversion

// case 2 - we previously finished a conversion with this ADC - CS is low and Clk is high

// so the ADC is being held ready to convert when we drop the clock line

// cater for both by raising CS, lowering clock and lowering CS

if(((IOB & bmADC1CsPin) == 0) && ((IOB & bmADCnSClkPin) != 0))

{

// stop the other ADC (will probably cause an immediate conversion - sort it out later

IOB |= bmADC2CsPin;

// handle post DDS delay if one is requested

if(AdcReadDelay > 0)

return;

if(TR0)

while(TF0 == 0)

;

TR0 = 0;

TF0 = 0;

IOB |= bmADC1CsPin;

IOB &= ~bmADCnSClkPin;

IOB &= ~bmADC1CsPin;

// next time round go check for completion of ADC conversion

ReturnStatus &= ~(AdcStartFlag);

// reset timeout counter for next timeout period

AdcTimeStart = 0;

// flag fact that ADC is running for double conversion state machine

bAdcConverting = TRUE;

// small delay to allow settling of SDO line

j = IOA;

k = IOA;

// make sure SDO is high (ie ADC is converting)

if((IOA & bmADC1SdoPin) != 0)

ReturnStatus |= AdcNotResponding;

return;

}

// case 3 - CS was high so either startup or ADC was being held whilst other was used

// or it could be a fault condition. Either way set both low and proceed as fro case 4

else if(IOB & bmADC1CsPin)

{

IOB &= ~bmADCnSClkPin;

IOB &= ~bmADC1CsPin;

}

// case 4 - may be case 3 from above or CS and clk may both have been low

// if we were converting on ADC then see if it is ready. Wait until SDI goes low

// but if we timeout, just try resetting anyway - we'll discover the fault

// when we try to get the result (might as well be an optimist :-))

if((IOA & bmADC1SdoPin) == 0)

{

if(AdcTimeStart <= 3)

return;

}

// ok, so SDI is low - we are probably in IO phase. Clock 5 times then make it a case 2

// and case 2 will pulse CS high then low to start conversion as normal

clock_adc_5_times();

return;

}

// otherwise, have we more readings to collect?

else if(AdcReadCount)

{

// check for and handle ADC input

if((IOA & bmADC1SdoPin) != 0)

{

if(DoubleConvertState == 2 && AdcReadCount == 1)

{

IOA |= bmFQUDDdsPin;

IOA &= ~ bmFQUDDdsPin;

}

// set mask to get bits of ADC mode for ltc2440

n = 0x10;

AUTOPTRH2 = MSB(&AdcInData[AdcReadsDone][0]);

AUTOPTRL2 = LSB(&AdcInData[AdcReadsDone][0]);

// 4 bytes of data (32 bits)

for(i=0; i<4; i++)

{

// no need to clear next byte to start with (shift data in)

// AdcInData[i] = 0;

// step thru each bit of data

// use variable k to accumulate byte of data

for(j=0; j<8; j++)

{

// in case this is an ltc2440, shift out mode on SDI pin

// only do this for the first 5 bits

// 23-05-06 change

// when doing exeter I found that if SDI bit was left high

// it caused problems so pulled low when OSR has been sent.

IOA &= ~bmAdcSdiPin;

if(n)

{

if(AdcMode & n)

IOA |= bmAdcSdiPin;

n >>= 1;

}

// set clock high

IOB |= bmADCnSClkPin;

// shift left ready for next bit

k <<= 1;

// read data bit

if((IOA & bmADC1SdoPin) == 0)

k |= 1;

// and set clock low again unless this is the last bit

if((j!=7) || (i!=3))

IOB &= ~bmADCnSClkPin;

}

EXTAUTODAT2 = k;

}

// reset timeout timer for next conversion

AdcTimeStart = 0;

// update counters for conversion just done

AdcReadsDone++;

AdcReadCount--;

//If there are more conversions to do restart immediately

//otherwise stop, and restart sending data to PC in case it was suspended

if(AdcReadCount)

IOB &= ~bmADCnSClkPin;

else

{

// flag fact that ADC is not running for double conversion state machine

bAdcConverting = FALSE;

PauseDataIn = FALSE;

ReturnStatus |= AdcDataReady;

}

}

// idle too long? give up!

else if(AdcTimeStart > 3)

AdcTimeout();

}

}

4.3. Manage data in from USB to PC

void handle_in(void)
{

 BYTE i,j,k;

 // check EP6 EMPTY bit in EP2468STAT (SFR), core set's this bit when FIFO is empty

 // do this to avoid double buffering

 if((EP2468STAT & bmEP6EMPTY))

 // check EP6 FULL(busy) bit in EP2468STAT (SFR), core set's this bit when FIFO is full

 // do this for double buffering

 //if(!(EP2468STAT & bmEP6FULL))

 {

 AUTOPTRH2 = MSB(&EP6FIFOBUF);

 AUTOPTRL2 = LSB(&EP6FIFOBUF);

 // put last command into response

 EXTAUTODAT2 = LastCommand;

 // signal whether we thought VNA power was present

 if(IOB & bmVNAPower)

 ReturnStatus &= ~VnaNoPower;

else

 ReturnStatus |= VnaNoPower;

 // put return status flags and current IO ports into reply

 // plus number of ADC reads completed

 EXTAUTODAT2 = ReturnStatus;

 EXTAUTODAT2 = IOA;

 EXTAUTODAT2 = IOB;

EXTAUTODAT2 = AdcReadsDone;

 // If a sequence of ADC reads is finished, copy output data to reply

 // then reset for next command

if(ReturnStatus & AdcDataReady)

{

 for(j=0; j<AdcReadsDone;j++)

 for(i=0; i<4; i++)

 EXTAUTODAT2 = AdcInData[j][i];

 k = 5+(4*AdcReadsDone);

 AdcReadsDone = 0;

 PauseDataOut = 0;

 ReturnStatus &= ~AdcDataReady;

}

else

 k = 5;

 // arm EP6IN

 SYNCDELAY;

 EP6BCH = 0;

 SYNCDELAY;

 EP6BCL = k;

}

}
5. Usage
Here is an example C program that reads from the VNA

int main()

{

int i;
 // we need a structure for the received message

VNA_RXBUFFER message;
 // this is a pointer to a VNA device class

VNADevice* VNA;

 // this is to hold the number of bytes returned from a read

int BytesReturned;

 // initialise a new VNA device

VNA = new VNADevice;

// check that we found the VNA. Note that if there is more than one

 // we find just one.

 if (VNA->get_State() != 1)

{

printf("Sorry - cannot open VNA interface: ");

print_last_error_message();

delete VNA;

return true;

}

 // Try to read the VNA and check for errors

if(VNA->Read(&message) == false)

print_last_error_message();

else

{

 BytesReturned = VNA->get_BytesReturned();

printf("Bytes Returned: %d\n", BytesReturned);

printf("Last Command Received: 0x%02x\n", message.last_command);

printf("Return Status 0x%02x\n", message.return_status);

if(message.return_status != 0)

{

printf(" ");

if(message.return_status & bVnaStatusAdcTimeoutFlag)
printf("ADC Timeout, ");

if(message.return_status & bVnaStatusNoVnaPowerFlag)
printf("No VNA Power, ");

if(message.return_status & bVnaStatusAdcDataReadyFlag)

printf("ADC Data Ready, ");

if(message.return_status & bVnaStatusAdcConvPendFlag)
printf("ADC Conversion pending");

printf("\n");

}

printf("IO Ports: A = 0x%02x, B = 0x%02x\n", message.ioa, message.iob);

printf("Number of ADC reads done = %d\n", message.ADC_reads_done);

if((message.return_status & bVnaStatusAdcDataReadyFlag) &&

 (message.ADC_reads_done > 0))

{

if(BytesReturned != (5 +(4*message.ADC_reads_done)))

printf("Error, expected %d bytes of data, got %d bytes\n",

(5 +(4*message.ADC_reads_done)), BytesReturned);

else

{

for(i=0;i<message.ADC_reads_done; i++)

printf(" ADC result %d = 0x%02x 0x%02x 0x%02x 0x%02x\n", i,

message.data[i*4], message.data[i*4+1],

message.data[i*4+2], message.data[i*4+3]);

}

}

}

delete VNA;

return true;

}
=======================================

Its core routine is this (there is also code to create the VNA device – trivial) The code can either be linked in directly or via a dll.
bool VNADevice::Read(VNA_RXBUFFER * readbuf)
// Read data from BULK endpoint

{

void * rb = readbuf;

// pin the readbuf in memory

d->pInPipe->pipeNum = 1;

// most likely

GetHandle();

Result = DeviceIoControl((HANDLE)d->DevDrvHandle,

IOCTL_EZUSB_BULK_READ,

d->pInPipe,

sizeof(BULK_TRANSFER_CONTROL),

rb,

// readbuf

255,

d->pBytesReturned,

NULL);

ReleaseHandle();

return(Result);

};
======================================

Typical output with no ADC data is thus

[image: image1]
=====================================

and if we ask for 5 adc reads by sending the message 55 00 00 05 00 00 00 00 00 00 00 00 00 00 00:

[image: image2]
======================================

Writing data is just as easy. A message of 15 bytes thus

55 C0 40 10 00 11 22 33 44 55 66 77 88 99 AA

would ask the USB to reset the DDS, set the DDS chips to 11 22 33 44 55 and 66 77 88 99 AA then wait 0x40 msec before doing an ADC read, do 16 (0x10) ADC reads and return a message of 5 + 4*16 bytes of data. As the ADCmode is 00, then ADC1 alone would be used and either it is an LTC2410 or the 5 configuration bits for the 2440 are set to zero.
=====================================

Writing a message of “5A 80 55 00 00” would set port A to x1010101 - bit 7 is not set as it is an input bit
=====================================

Writing a message of “5A 20 00 00 05” would set the attenuator bits (in port B) to ‘101’.

Use this and NOT the direct port B writing for future compatibility.

6. VNADLL
The DLL has 3 separate interfaces:
1. In32() / Out32() compatible

2. VNA low level message interface

3. VNA high level interface

These 3 are defined below. The portion of header file that describes the interface is as follows.
class VNADevice

{

private:

bool Result;

// DeviceIoControl result

int state;

// -1=no device +1=device OK

class Helper * d;

// holds the USB device state

void GetHandle(void);

void ReleaseHandle(void);

bool ToggleReset(bool hold);

public:

__declspec(dllexport) VNADevice();

// Constructor: open device,
// set state

__declspec(dllexport) ~VNADevice();

// Destructor: release objects and
// structs

__declspec(dllexport) bool Init(void);

// Build descriptors, get pipes

__declspec(dllexport) int get_State();

// -1 = no device +1 = device OK

__declspec(dllexport) bool Start();

// Release reset of the 8051

// processor on VNA

__declspec(dllexport) bool Stop();

// Halt the 8051 processor on VNA

__declspec(dllexport) int get_Instance();
// get instance of VNA (0..9)

__declspec(dllexport) bool set_Instance(int instance); // set instance (0..9)
__declspec(dllexport) int get_BytesReturned();

__declspec(dllexport) bool Read(VNA_RXBUFFER * readbuf);

__declspec(dllexport) bool Write(VNA_TXBUFFER * writebuf, int message_size);

};

// emulation of parallel port driver interface

bool __declspec(dllexport) _stdcall Out32(short PortAddress, short data);

WORD __declspec(dllexport) _stdcall Inp32(short PortAddress);

// simple VNA usb interface

bool __declspec(dllexport) _stdcall vnawrite(void *message, short bytecount);

bool __declspec(dllexport) _stdcall vnaread(void *message, short *bytecount);

The first section describes the public interface to a VNADevice class – plagiarised from the TAPR design for consistency. I need to copy in the GPL bits yet. Its use is simple and it provides the ‘best’ interface to use. An example of how to use it is shown in section 6 above
Note that the dll includes aliases for the inp32(), out32(), vnaread() and vnawrite() functions. The main functions are built with VC++ “decorated” names, and this causes a problem linking to other languages such as VB. The aliases solve this. This is done using the .def file.
The second section shows the Inp32() and Out32() equivalents. The only difference to the current versions
 is the fact that the Out32() function returns a bool of true if the write succeeds and false if it fails. The Inp32() function achieves the same but returns a value of 0xFFFF in the event of failure. The functions remap the bit order so that the parallel port bit sequence is honoured for compatibility with current software. A write to any port other than 378 and 278 will give an error. A read from 279 or 379 will return just the ADC SDO bit inverted in software. A read of 378 or 278 will return the current output settings. Any other read or write will return an error. Note that if this interface is used to directly replace the Inp32() function in inout32.dll, there is a compatibility issue. Because of the double buffering of messages from USB to PC, the status of lines is not correct until after the 2nd or 3rd read. To cater for this, the inp32() module perfoms 3 reads in quick succession and returns the result of the third. The current code does NOT support the second ADC as the port allocations are as yet provisional. Also, the use of this interface is not recommended – it is a slow way to drive the VNA. However, if you have a VNA program that does not know how to drive the USB port directly but uses inpout32.dll, then if you rename vnadll.dll as inpout32.dll, the calling program will be fooled into using this instead and should allow the USB port to be used.
The third section is a wrapper to the VNADevice class that sends a message to the VNA or receives a message from it. The message would be formatted in the same manner as for the VNA::Write() or VNA::Read() functions.
Here is an example of using the wrapper. All that is needed is a call to vnaread() or vnawrite() with the appropriate message pointer and size.

int main()

{

int i;

VNA_RXBUFFER message;

short BytesReturned;

if(vnaread(&message, &BytesReturned) == false)

{

print_last_error_message();

}

else

{

printf("Bytes Returned: %d\n", BytesReturned);

printf("Last Command Received: 0x%02x\n", message.last_command);

printf("Return Status 0x%02x\n", message.return_status);

if(message.return_status != 0)

{

printf(" ");

if(message.return_status & bVnaStatusAdcTimeoutFlag)
printf("ADC Timeout, ");

if(message.return_status & bVnaStatusNoVnaPowerFlag)
printf("No VNA Power, ");

if(message.return_status & bVnaStatusAdcDataReadyFlag)

printf("ADC Data Ready, ");

if(message.return_status & bVnaStatusAdcConvPendFlag)
printf("ADC Conversion pending");

printf("\n");

}

printf("IO Ports: A = 0x%02x, B = 0x%02x\n", message.ioa, message.iob);

printf("Number of ADC reads done = %d\n", message.ADC_reads_done);

if((message.return_status & bVnaStatusAdcDataReadyFlag) &&

 (message.ADC_reads_done > 0))

{

if(BytesReturned != (5 +(4*message.ADC_reads_done)))

printf("Error, expected %d bytes of data, got %d bytes\n",

(5 +(4*message.ADC_reads_done)), BytesReturned);

else

{

for(i=0;i<message.ADC_reads_done; i++)

printf(" ADC result %d = 0x%02x 0x%02x 0x%02x 0x%02x\n", i,

message.data[i*4], message.data[i*4+1],

message.data[i*4+2], message.data[i*4+3]);

}

}

}

return true;

}
7. Timing

The basic timing of signals on the VNA interface is as follows. This is with the pre V0-11 code and 48 MHz CPU clock, software configured from the fx2 24MHz crystal. Timings for V0-11 may be seen in the companion report together with screen shots from an oscilloscope and explanations of their meanings. Timings for later versions plus oscilloscope traces are available separately on the website http://g8kbb.roberts-family-home.co.uk and illustrate operation of the various options in the code.
The approximate timing of an ADC Reset is thus. The initial and subsequent delays may be increased depending on the initial state and specified delay.

[image: image3]
The timing of data bit reads from the ADC is as follows. The data timing is that observed in my VNA and should be viewed therefore as ‘typical’ not ‘specified’

[image: image4]
The first 5 bits of the serial clocking of data from the ADC also clock in the 5 bits of the OSR. This slows down the clock slightly.

The DDS reset timing is as follows:

[image: image5]
When writing data to the DDS, this is the timing for data setup and clock:. If a bit needs to be high, it is raised before the leading edge as shown and held until the clock falling edge.

[image: image6]
After each sequence of 8 DDS bit writes there is an 8 µsec delay before the next byte. After all 40 bits (5 bytes) the FQ_UD line is pulsed high then low to load the DDS.
The ADCdelay value is an integer in the range 0 to 255. If the CmdVnaSetDdsFlagsDelayIsUsec flag is clear, then the delay between the FQ_UD pulse at the end of DDS setting and the start of ADC conversion (falling edge of CS) is (ADCdelay) msec. If the flag is set, then the delay is (12 + (8 * ADCdelay)) µsec.
8. Fast and Slow ADCs

This version of the code is designed to support the fast (LTC2440) and slow (LTC2410) ADCs. It does this by assuming that it is talking to the LTC2440 and outputs the 5 OSR bits in any event. If it is talking to the LTC2410, then the data is not used. The effect of sending this data adds 5 usec to the process of reading the ADC. In addition, the PC may ask for ADC1 or ADC2 to be used. It may also ask for simultaneous reads of both ADCs.
9. Software Build Instructions

The software comprises 5 parts. These are

· The code downloaded onto the FX2 chip by the downloader

· The downloader (n2pkvld.sys)
· The inf and cat files that install the downloader and ezusb.sys

· The dll (vnadll.dll)

· The example utilities for using the DLL.

The FX2 code is built using the free tools from Cypress. The downloader needs Visual C++ (professional or enterprise) V5 or later plus the Windows 2000 DDK. The dll and utilities need Visual C++ V5 or later. The inf file needs a text editor. The cat file needs the makecat DDK utility.
9.1. The FX2 code

Available on the Cypress website on www.cypress.com are a free set of tools for the FX2 chip. Follow the links for the FX2 development board and locate the downloadable software. Download and install it. This installs examples, the Cypress utilities and the Keil development tools. The software carefully tells you that it can only be used with the Cypress prototyping board with off-chip memory. Ignore this. It works just fine but has a 4K code size limit. The source code contains a project file (the .UV2 file). Open the project. Locate the ‘rebuild all’ option from the menus and rebuild the project. There should be no errors, no warnings and the result should be a file called ‘fw.hex’. Note that it needs to be able to find the correct header files – put the directory in the “target\fw” folder if it complains. The fw.hex file will be built into the vna download driver in a later stage. It may also be downloaded into the FX2 directly using the Cypress EZ-Manager program that is included with the Cypress tools. The FX2 code is based on the cypress “target FW” code. One problem I did notice with the fw.c code from Cypress is that it assumes the configuration pointers are set by a USB reset. This is not true if you are downloading the code to the target board with EZ-mgr. I have modified the code to reduce the chance of problems but they still occur.
9.2. The Download driver

The download driver loads the fw.hex executable file built as above into the FX2 chip. It does this by being associated with the VID/PID combination of the FX2 that are stored in EEPROM and used on startup. When the FX2 “enumerates” on the bus, it gives these identifiers to the PC. The PC then locates and runs the download driver (n2pkvld.sys). This driver downloads fw.hex to the chip (a copy of fw.hex is not needed separately as it is contained within n2pkvld.sys). The FX2 then “renumerates” – i.e. identifies itself to the PC again with its new identity – and is then available for use. All this takes place when the hourglass icon appears on the screen just after you plug the USB cable in. If you look closely, it may be seen to change to an hourglass twice with a brief pause in between – this is the two stages of enumeration. The driver is built using the DDK. Choose the appropriate environment (checked or free – use free unless you are intending to debug problems. The instructions for building the driver in a step by step guide are contained in the Cypress application note “EZ Loader Custom USB Firmware Loader Driver”. It is well written and I see no point in replicating it here. In summary however, you convert fw.hex into a C source file, paste that into firmware.c and rebuild the driver using DDK to create n2pkvld.sys.
9.3. The Inf & Cat files
The inf file is a minimal file created from the cypress template. The cat file is built using the DDK ‘makecat’ utility and is unsigned. If you modify the inf file, it is worth using the perl scripts in the DDK to check it. In practice you should not have to modify the .inf file unless you change VID/PID of the install configuration. If you modify n2pkvld.sys though, you should rebuild the cat file with makecat and the source file n2pkcld.cdf. Note that in any case the version information in the inf files should be changed.
9.4. The DLL and demo files

This is a straightforward VC++ set of projects. Open the workspace and do a batch build. There will be a series of warning messages due to two things. First, a set of warnings about the DDK files (zero based array size) will be generated, then a number of performance warnings from the dll related to casting an int as a bool. Ignore them. When running the programs, remember that they need to be able to find the dll. Note the .def file includes aliases for functions and places the inp32() and out32() functions in the dll with the same ordinals as inpout32.dll. You may find that in a batch build, link fails if a utility is built before the dll. If this happens, rebuild the ones that failed.
10. Configuring your hardware

Before a unit can be used for the VNA, it needs to be configured with the correct VID & PID for the software. There are two ways to do this – using the N2PK “usb configure” application or using the Cypress tools. I recommend using “usb configure”. The description below is for the Cypress tools but note that you need the original Cypress FX2 tools – not the ones released with the FX2LP. This is because the old tools (and this code) use ezusb.sys and the new tools use cyapi. I might port to cyapi at some point but not now! See the hardware guide for details on using the usb configure application.
Programming may be done using the Cypress USB FX2 tools, downloaded from the internet. There are two programs needed for this, the Cypress EZ-USB Control panel and a program that is downloaded onto the FX2 using the Control Panel and which is used to rewrite the EEPROM data. Both are contained within the downloaded toolset.
With the software installed, there will be a set of drivers in place for the unprogrammed FX2 which will load automatically when the board is plugged in. These drivers allow the control panel to communicate with the FX2. Plug the board in and allow the drivers to load. Now run the USB Control Panel. If it finds the chip, it starts. If it does not, it will issue an error message stating the no devices were found.

Now download the Vend_Ax.hex program. This is done by clicking on the download button browsing to the file and opening it. Make sure that the version you load is the one in the FX2 directory and not one of the other versions!. The pane at the bottom of the screen will show the data scrolling up the screen as it is loaded to the chip.

Check the defaults on the line with the VendReq button – it should have Request 0xA2, Value 0x0000, Index 0xBEEF, Length 16, DIR 1 IN. If so, click VendReq which will cause the Vend_Ax program to read the bottom 16 bytes of EEPROM and upload it to the PC. Now change the direction to 0 OUT, and the hex bytes to the new EEPROM data as defined below. Click on VendReq again. Now change direction back to 1 IN and click VendReq a final time to check that the data read back is as intended. If not, correct it and try again.
In the following two strings are shown. The first is the normal one to use, where the USB interface is not used to power the VNA. It tells windows that it needs less than 100mA. The second one notifies Windows that it requires 500mA to function. Program which ever you want, the drivers (n2pkvld.sys and n2pkvld500.sys) will be automatically selected as needed.

The string to set the device to is one of the following
C0 47 05 04 10 01 00 00
for normal use
C0 47 05 08 10 01 00 00
used for USB powered systems taking up to 500mA

The first byte (0xC0) is a flag that indicates to the FX2 that the EEPROM contains configuration data. The second and third bytes (47 05) are the VID (in this case 0547). The forth and fifth bytes (04 10 or 08 10) are the PID (in this case 1004 or 1008). The next 2 bytes are the DID (01 00) representing a device ID of 0001. The last byte is the configuration byte which takes a value of 00 (run I2C bus at default speed and connect to the USB bus after reset). Also note that if you do not want to use high speed (480 Mbit) mode, you can apparently disable the high speed transceiver and save power by setting the MS bit of the config byte. I have not tried this – refer to Cypress Application note 064 – “EZ-USB FX2™/AT2™/SX2™ Reset and Power Considerations”.
11. Application Notes

The best way to drive the VNA is by using the VNADevice class directly, either by including the code structures in your code or using the dll. This results in optimum control and is the fastest way of those provided here to drive it. The inp32() and outp32() are provided for testing with the VNA windows software. It is a *SLOW* way to use the interface. The read and write wrappers provide an easy way to use the VNADevice class without worrying about the details. Less control is possible this way.
The VNADevice::Read() and Write() functions also contain code that it not as fast as might be wanted in that the functions request and release handles on each call. It would be better to ask for the handle at the start of a time critical sequence of operations and release it at the end.

If you ask for too little data when reading the VNA (i.e. offer up a buffer size less than the size of message the FX2 is sending back) then an error will be returned. To clear this error, reset the pipe. A subsequent read from the pipe with a bigger buffer will return the data from the FX2 – this will be the message which caused the error – rather than being lost it will be held until the PC asks for it correctly. For this version of the code a buffer size of 255 (decimal) will hold any possible response from the chip.
To get the maximum speed from the interface, stack up set commands for processing and read data as soon as available. To do this, set both of the PauseData bits in the set command flags and keep the USB pipe full of requests. What will happen is that the chip will buffer inputs and outputs, processing each set command as soon as the previous one is complete. The buffering of commands means that initially 2 set command may be written – the first will be read and processed immediately, the next buffered and the output thread will then stall when writing a third until the FX2 has finished the first and moved on to the second. During each set of conversions the sending of IN frames that just contain status information will be suspended, although in between one ADC sequence and the next, the odd status message may be returned. Therefore the IN thread will stall until data results are available. The PC will then waste little CPU time waiting for I/O and the process will run as fast as possible. Setting the CmdVnaSetDdsFlagsDoubleConvert flag will also overlap the setting of the DDS for the next command with the ADC conversion of the previous one. This optimises performance but might introduce a small amount of digital noise when using the most sensitive ADC conversion speed (but so far I do not see any).
If you use the interface on a USB1.1 port be careful. Under USB 2.0 the packet size is 512 bytes and the code will never send a block of more than 256 bytes so no problems will be encountered. However, on a USB 1.1 interface the block size is reduced to 64 bytes. The firmware however will not be aware of this, and if you ask it to generate too much data it will result in a truncated response. In consequence, if the port is USB 1.1, do not ask for more that 14 ADC conversions in a single command (7 if using dual ADC conversion).

If you send a SET command without the PauseDataOut flag set, and ADC conversions requested may be aborted by another command sent to the chip before it is complete. This is the simplest way to drive it – send a set command then wait for the results. If you change your mind and want to abort the conversions, just send another command.
You could set the attenuator bits by writing to port B. May I suggest instead using the Atten byte in the raw command instead for compatibility.

Dave Roberts, G8KBB

10th October 2008
End of Document
C:\Cypress\USB\Drivers\vna\test\vnaio\Debug>readvna

Bytes Returned: 5

Last Command Received: 0x00

Return Status 0x40

 No VNA Power,

IO Ports: A = 0x01, B = 0x00

Number of ADC reads done = 0

C:\Cypress\USB\Drivers\vna\test\vnaio\Debug>readvna

Bytes Returned: 25

Last Command Received: 0x55

Return Status 0x60

 No VNA Power, ADC Data Ready,

IO Ports: A = 0x02, B = 0x00

Number of ADC reads done = 5

 ADC result 0 = 0x00 0x00 0x00 0x00

 ADC result 1 = 0x00 0x00 0x00 0x00

 ADC result 2 = 0x00 0x00 0x00 0x00

 ADC result 3 = 0x00 0x00 0x00 0x00

 ADC result 4 = 0x00 0x00 0x00 0x00

C:\Cypress\USB\Drivers\vna\test\vnaio\Debug>

�

�

�

�

� Some windows software uses a piece of code called inpout32.dll to bypass windows 2000 or XP controls that limit direct access to the parallel port. This presents two function to the application called Inp32() and Out32(). The USB DLL mimics this IN PART so that VNA code using these can use the USB version.

Page 1 of 25
V1-1

[image: image7.emf]1us 1.2us

200 ns 500 ns

CLK

SDO

1us 1.2us

200 ns 500 ns

CLK

SDO

[image: image8.emf]250ns 250ns 250ns

Reset

Clk

FQ_UD

250ns 250ns 250ns 250ns 250ns

Reset

Clk

FQ_UD

250ns 250ns

[image: image9.emf]>=1 us 250 ns >=1.6 us

SCLK

CS

>=1 us 250 ns >=1.6 us

SCLK

CS

[image: image10.emf]Clk

LO DDS Data

RF DDS Data

250ns 1.9us

250ns

1.1us

Clk

LO DDS Data

RF DDS Data

250ns 1.9us

250ns

1.1us

